Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dong-Dong Lin, ${ }^{\text {a }}$ Kai-Liang Yin ${ }^{\text {b }}$ and Duan-Jun Xu ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{\mathbf{b}}$ Key Laboratory of Fine Chemical
Engineering, Jiangsu Polytechnic University,
Changzhou 213016, People's Republic of China
Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.027$
$w R$ factor $=0.071$
Data-to-parameter ratio $=13.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

catena-Poly[[[bis(1 H -imidazole- $\kappa \mathrm{N}^{3}$)zinc(II)]-μ-terephthalato- $\left.\kappa^{2} O: O^{\prime}\right]$ trihydrate]

In the title polymeric complex, $\left\{\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]\right.$-$\left.3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Zn}^{\mathrm{II}}$ atom is coordinated by two terephthalate dianions and two imidazole ligands in a distorted tetrahedral geometry. The terephthalate dianions are located on inversion centres and bridge neighbouring $\mathrm{Zn}^{\mathrm{II}}$ atoms to form zigzag polymeric complex chains. The interplanar distance of 3.212 (17) \AA between parallel imidazole rings of adjacent polymeric chains suggests the existence of $\pi-\pi$ stacking.

Comment

As $\pi-\pi$ stacking between aromatic rings is correlated with the electron-transfer process in some biological systems (Deisenhofer \& Michel, 1989), we are interested in the study of the nature of $\pi-\pi$ stacking in metal complexes (Liu et al., 2004; Pan \& Xu, 2004). As a part of our ongoing investigations, the title polymeric $\mathrm{Zn}^{\mathrm{II}}$ complex, (I), incorporating imidazole, has recently been prepared, and its X-ray structure shows the existence of $\pi-\pi$ stacking between imidazole rings.

(I)

The structure of a fragment of (I) is shown in Fig. 1. The $\mathrm{Zn}^{\mathrm{II}}$ atom is coordinated by two imidazole ligands and two terephthalate dianions in a distorted tetrahedral geometry. The bond angles involving the metal centre range from 103.64 (7) to 122.75 (8) ${ }^{\circ}$ (Table 1). The terephthalate dianions are located on inversion centres and bridge neighbouring $\mathrm{Zn}^{\text {II }}$ atoms through terminal carboxyl groups to form zigzag polymeric complex chains (Figs. 1 and 2). The carboxyl groups of the terephthalate ions coordinate to the $\mathrm{Zn}^{\mathrm{II}}$ atom in a monodentate manner. The uncoordinated carboxyl O atoms (O2 and O 4) are hydrogen-bonded to the uncoordinated water molecules, resulting in a linkage between adjacent polymeric chains (Fig. 1).

The interplanar distance of 3.212 (17) \AA between parallel imidazole rings suggests the existence of $\pi-\pi$ stacking (Fig. 2).

Received 10 December 2004
Accepted 4 January 2005
Online 15 January 2005

Figure 1
The structure of a fragment of (I), showing 30% probability displacement ellipsoids [symmetry codes: (v) $2-x,-y,-z$; (vi) $1-x, 2-y, 2-z$]. Hydrogen bonds are shown as dashed lines.

Experimental

All reagents were commercially available and of analytical grade. An ethanol solution (5 ml) of imidazole (2 mmol) was mixed with an aqueous solution (5 ml) of $\mathrm{ZnCl}_{2}(1 \mathrm{mmol})$, and the mixture was refluxed for 1 h . An aqueous solution (8 ml) containing terephthalic acid (1 mmol) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{mmol})$ was then added to this mixture, which was refluxed for a further 1 h . After cooling to room temperature, the solution was filtered. Colourless single crystals of (I) were obtained after 20 d .

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=419.69$
Triclinic, $P \overline{1}$
$a=8.3046(4) \AA$
$b=9.5443(4) \AA$
$c=12.0048(8) \AA$
$\alpha=81.220(3)^{\circ}$
$\beta=70.030(2)^{\circ}$
$\gamma=83.678(2)^{\circ}$
$V=882.10(8) \AA^{\circ}$
Data collection

Rigaku R-AXIS RAPID	3076 independent reflections
\quad diffractometer	2807 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.024$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$\quad(A B S C O R ;$ Higashi, 1995)	$h=-9 \rightarrow 9$
$T_{\min }=0.665, T_{\max }=0.860$	$k=-11 \rightarrow 11$
6595 measured reflections	$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.071$
$S=1.12$
3076 reflections
235 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0328 P)^{2}\right. \\
& +0.4577 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3} \\
& \text { Extinction correction: none }
\end{aligned}
$$

Figure 2
The partially overlapped arrangement of imidazole rings, showing $\pi-\pi$ stacking [symmetry code: (i) $1-x, 1-y, 1-z$]. Hydrogen bonds are shown as dashed lines.

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Zn}-\mathrm{O} 1$	$1.9883(15)$	$\mathrm{Zn}-\mathrm{N} 1$	$1.9735(18)$
$\mathrm{Zn}-\mathrm{O} 3$	$1.9660(15)$	$\mathrm{Zn}-\mathrm{N} 3$	$1.9940(19)$
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 3$	$103.95(6)$	$\mathrm{O} 3-\mathrm{Zn}-\mathrm{N} 1$	$106.84(7)$
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{N} 1$	$111.57(7)$	$\mathrm{O} 3-\mathrm{Zn}-\mathrm{N} 3$	$103.64(7)$
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{N} 3$	$106.29(7)$	$\mathrm{N} 1-\mathrm{Zn}-\mathrm{N} 3$	$122.75(8)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 13 \cdots \mathrm{O} 2$	0.95	1.87	2.818 (2)	174
$\mathrm{O} 1 W-\mathrm{H} 14 \cdots \mathrm{O} 2 W^{\text {i }}$	0.87	1.91	2.768 (3)	170
$\mathrm{O} 2 W-\mathrm{H} 15 \cdots \mathrm{O} 4$	0.85	2.03	2.886 (3)	177
$\mathrm{O} 2 W-\mathrm{H} 16 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	1.98	2.893 (3)	168
$\mathrm{O} 3 W-\mathrm{H} 17 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.88	1.94	2.790 (3)	164
$\mathrm{O} 3 W-\mathrm{H} 18 \cdots \mathrm{O} 4^{\text {iii }}$	0.90	1.95	2.821 (3)	163
$\mathrm{N} 2-\mathrm{H} 6 \cdots \mathrm{O} 1 W^{\text {iv }}$	0.86	2.03	2.877 (3)	168
$\mathrm{N} 4-\mathrm{H} 10 \cdots \mathrm{O} 3 \mathrm{~W}$	0.86	1.94	2.781 (3)	164

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y+1, z$; (iii) $x+1, y, z$; (iv) $x-1, y, z$.

H atoms on aromatic rings were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and were included in the final cycle of refinement in the riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms. Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to the O atoms, with fixed isotropic displacement parameters of $0.05 \AA^{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997) and $X P$ (Siemens, 1994); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

metal-organic papers

This project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Liu, B.-X., Su, J.-R. \& Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.
Pan, T.-T. \& Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

