metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dong-Dong Lin,^a Kai-Liang Yin^b and Duan-Jun Xu^a*

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ^bKey Laboratory of Fine Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213016, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.027 wR factor = 0.071 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[bis(1*H*-imidazole- κN^3)zinc(II)]- μ -terephthalato- $\kappa^2 O:O'$] trihydrate]

In the title polymeric complex, $\{[Zn(C_8H_4O_4)(C_3H_4N_2)_2]$. 3H₂O $\}_n$, the Zn^{II} atom is coordinated by two terephthalate dianions and two imidazole ligands in a distorted tetrahedral geometry. The terephthalate dianions are located on inversion centres and bridge neighbouring Zn^{II} atoms to form zigzag polymeric complex chains. The interplanar distance of 3.212 (17) Å between parallel imidazole rings of adjacent polymeric chains suggests the existence of π - π stacking. Received 10 December 2004 Accepted 4 January 2005 Online 15 January 2005

Comment

As π - π stacking between aromatic rings is correlated with the electron-transfer process in some biological systems (Deisenhofer & Michel, 1989), we are interested in the study of the nature of π - π stacking in metal complexes (Liu *et al.*, 2004; Pan & Xu, 2004). As a part of our ongoing investigations, the title polymeric Zn^{II} complex, (I), incorporating imidazole, has recently been prepared, and its X-ray structure shows the existence of π - π stacking between imidazole rings.

The structure of a fragment of (I) is shown in Fig. 1. The Zn^{II} atom is coordinated by two imidazole ligands and two terephthalate dianions in a distorted tetrahedral geometry. The bond angles involving the metal centre range from 103.64 (7) to 122.75 (8)° (Table 1). The terephthalate dianions are located on inversion centres and bridge neighbouring Zn^{II} atoms through terminal carboxyl groups to form zigzag polymeric complex chains (Figs. 1 and 2). The carboxyl groups of the terephthalate ions coordinate to the Zn^{II} atom in a monodentate manner. The uncoordinated carboxyl O atoms (O2 and O4) are hydrogen-bonded to the uncoordinated water molecules, resulting in a linkage between adjacent polymeric chains (Fig. 1).

The interplanar distance of 3.212 (17) Å between parallel imidazole rings suggests the existence of π - π stacking (Fig. 2).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of a fragment of (I), showing 30% probability displacement ellipsoids [symmetry codes: (v) 2 - x, -y, -z; (vi) 1 - x, 2 - y, 2 - z]. Hydrogen bonds are shown as dashed lines.

Experimental

All reagents were commercially available and of analytical grade. An ethanol solution (5 ml) of imidazole (2 mmol) was mixed with an aqueous solution (5 ml) of $ZnCl_2$ (1 mmol), and the mixture was refluxed for 1 h. An aqueous solution (8 ml) containing terephthalic acid (1 mmol) and Na_2CO_3 (2 mmol) was then added to this mixture, which was refluxed for a further 1 h. After cooling to room temperature, the solution was filtered. Colourless single crystals of (I) were obtained after 20 d.

Crystal data

 $wR(F^2) = 0.071$

3076 reflections

235 parameters

S=1.12

$[Zn(C_8H_4O_4)(C_3H_4N_2)_2] \cdot 3H_2O$	Z = 2
$M_r = 419.69$	$D_x = 1.580 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 8.3046 (4) Å	Cell parameters from 2893
b = 9.5443 (4) Å	reflections
c = 12.0048 (8) Å	$\theta = 2.8-24.0^{\circ}$
$\alpha = 81.220 \ (3)^{\circ}$	$\mu = 1.44 \text{ mm}^{-1}$
$\beta = 70.030 (2)^{\circ}$	T = 295 (2) K
$\gamma = 83.678 \ (2)^{\circ}$	Prism, colourless
V = 882.10 (8) Å ³	0.28 \times 0.22 \times 0.10 mm
Data collection	
Rigaku R-AXIS RAPID	3076 independent reflections
diffractometer	2807 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.024$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -9 \rightarrow 9$
$T_{\min} = 0.665, T_{\max} = 0.860$	$k = -11 \rightarrow 11$
6595 measured reflections	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0328P)^2$
$P[F^2 > 2\sigma(F^2)] = 0.027$	(0.05201)

$w = 1/[\sigma^2(F_o^2) + (0.0328P)^2]$
+ 0.4577P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$
Extinction correction: none

Figure 2

The partially overlapped arrangement of imidazole rings, showing π - π stacking [symmetry code: (i) 1 - x, 1 - y, 1 - z]. Hydrogen bonds are shown as dashed lines.

Table 1

Selected geometric parameters (Å, °).

Zn-O1	1.9883 (15)	Zn-N1	1.9735 (18)	
Zn-O3	1.9660 (15)	Zn-N3	1.9940 (19)	
$\Omega_1 - Z_n - \Omega_3$	103 95 (6)	O3-Zn-N1	106 84 (7)	
O1-Zn-N1	111.57 (7)	O3-Zn-N3	103.64 (7)	
O1-Zn-N3	106.29 (7)	N1-Zn-N3	122.75 (8)	

Fable 2			
Hydrogen-bond	geometry	(Å,	°)

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1W-H13···O2	0.95	1.87	2.818 (2)	174
$O1W - H14 \cdots O2W^{i}$	0.87	1.91	2.768 (3)	170
O2W−H15···O4	0.85	2.03	2.886 (3)	177
O2W−H16···O2 ⁱⁱ	0.93	1.98	2.893 (3)	168
$O3W - H17 \cdots O1W^{ii}$	0.88	1.94	2.790 (3)	164
O3W−H18····O4 ⁱⁱⁱ	0.90	1.95	2.821 (3)	163
$N2 - H6 \cdots O1W^{iv}$	0.86	2.03	2.877 (3)	168
$N4-H10\cdots O3W$	0.86	1.94	2.781 (3)	164

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y + 1, z; (iii) x + 1, y, z; (iv) x - 1, y, z.

H atoms on aromatic rings were placed in calculated positions, with C-H = 0.96 Å and N-H = 0.86 Å, and were included in the final cycle of refinement in the riding model, with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atoms. Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to the O atoms, with fixed isotropic displacement parameters of 0.05 Å².

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997) and *XP* (Siemens, 1994); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

H-atom parameters constrained

metal-organic papers

This project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Deisenhofer, J. & Michel, H. (1989). *EMBO J.* **8**, 2149–2170. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.

Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.

Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). *CrystalStructure*. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.